Efficient Multi-Target Tracking Using Graphical Models
نویسندگان
چکیده
The objective of this thesis is to develop a new framework for Multi-Target Tracking (MTT) algorithms that are distinguished by the use of statistical machine learning techniques. MTT is a crucial problem for many important practical applications such as military surveillance. Despite being a well-studied research problem, MTT remains challenging, mostly because of the challenges of computational complexity faced by current algorithms. Taking a very different approach from any existing MTT algorithms, we use the formalism of graphical models to model the MTT problem according to its probabilistic structure, and subsequently develop efficient, approximate message passing algorithms to solve the MTT problem. Our modeling approach is able to take into account issues such as false alarms and missed detections. Although exact inference is intractable in graphs with a mix of both discrete and continuous random variables, such as the ones for MTT, our message passing algorithms utilize efficient particle reduction techniques to make approximate inference tractable on these graphs. Experimental results show that our approach, while maintaining acceptable tracking quality, leads to linear running time complexity with respect to the duration of the tracking window. Moreover, our results demonstrate that, with the graphical model structure, our approach can easily handle special situations, such as out-of-sequence observations and track stitching. Thesis Supervisor: Alan S. Willsky Title: Professor of Electrical Engineering
منابع مشابه
Graphical Model-Based Algorithms for Data Association in Distributed Sensing
Associating sensor measurements with target tracks is a fundamental and challenging problem in multi-target tracking. The problem is even more challenging in the context of sensor networks, since association is coupled across the network, yet centralized processing is in general infeasible due to power and bandwidth limitations. Hence efficient, distributed solutions are needed. We propose tech...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملMathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملDecentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کاملMulti-view Object Tracking Using Sequential Belief Propagation
Multiple cameras and collaboration between them make possible the integration of information available from multiple views and reduce the uncertainty due to occlusions. This paper presents a novel method for integrating and tracking multi-view observations using bidirectional belief propagation. The method is based on a fully connected graphical model where target states at different views are ...
متن کامل